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Summary 
 
If we are to present instruction that is available anytime and anywhere, takes advantage of the substantial 
tutorial efficiencies of one teacher for every student, and is affordable, we must have recourse to technology, 
specifically computer technology.  Such technology can be used in instructional applications that range from 
drill and practice and tutorial dialogues, to multiplayer simulations and games.  It can be used in stand-alone 
modes or it can be used to supplement classroom instruction.  It can be used by individuals or by groups.  In 
all cases, however, it must take account of the current state of the learner, the eventual state of the learner 
that the instruction is intended to produce, and the instructional techniques that reliably effect transitions 
from one state to the other.  Models of the learner that represent these current and objective states must to an 
appreciable extent be models of the learner’s cognition, which produces the skills, performance, and 
competence needed for success in all military operations.  These models may be implicit as found in 
intrinsically programmed instruction, or they may be explicit.  Both types may be seen in technology-based 
instruction from its beginning.  Early explicit models were largely quantitative, involving fairly simple 
instructional paradigms, but fairly elaborate mathematics, including instructional applications of optimal 
control theory.  Current efforts are more concerned with qualitative models, 19 of which are briefly described 
and discussed.  These models all contribute to some degree to the efficiency and effectiveness of technology-
based instruction.  However, new challenges have arisen from today’s uncertain, asymmetric operational 
environment, which may require responses that cannot be foreseen nor well prepared for in advance.  Instead 
we must prepare our military forces and personnel to expect the unexpected and be prepared for it with 
individual and collective agility, creativity, and adaptability.  These qualities are fundamentally cognitive in 
nature and require more powerful and comprehensive cognitive models if they are to successfully serve our 
programs of education, training, and performance aiding. 
 
Introduction 
 
This paper concerns research on digital representations of human cognitive processes that may be used to 
develop computer-mediated learning and performance aiding systems.  We refer to such representations as 
‘models’ of human cognition.  This topic turns out to be extensive in both breadth and depth, so we focused 
our discussion on the following three questions: 
 
What is the military value of these models? 
 
What is their current state of development? 
 
What is their relationship to instructional systems development? 
 
What research and development should be undertaken to advance their value and utility? 
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Many valuable contributions are being made by researchers who are modeling neurological activity at one 
end of the behavioral spectrum and by researchers who are modeling human physical activity and 
performance at the other.  This paper is aimed somewhere in the middle of these efforts.  It concerns models, 
or representations, of human cognitive processes such as perception, memory, learning, decision-making, and 
problem solving.   These processes arise from “micro” neurological activity at one end of the spectrum and, 
in turn, produce “macro” physical activity and performance at the other.  Eventually, research and 
development may yield models that unify the full spectrum of human behavior from neurons to psychomotor 
activity, but the current state of knowledge limits us to efforts to understand and model components of this 
spectrum, hence our focus in this paper on one such component – cognition – which seems an appropriate 
level of concern for learning and human performance. 
 
Throughout the paper we refer to ‘the user’.  This is intended as a catchall term for students, decision makers, 
technicians, analysts, and anyone else who may be using computer technology for education, training, and 
decision and performance aiding.  The paper focuses on digital representation of these users’ cognitive 
processes.  
 
The Military Value of Cognitive Modeling 
 
It is a fact both obvious and frequently neglected that human competence, which is a product of human 
cognition, is essential to every military operation, across all echelons of command and activity.  Its 
importance is perennially evident in the conduct of military operations.  Even in the increasingly technology-
saturated environments of modern operations, human competence is needed to launch and control systems in 
space, operate and maintain robotic vehicles, deploy remote sensors and systems in contested territory, and 
so forth.  In short, there are no unmanned systems.  Without competent people to operate, maintain, and 
deploy our materiel assets, investments in them will return little and may in effect be wasted.  Given the wide 
availability of technology and the ease with which it can be obtained, human competence may increasingly 
account for the difference between success and failure in military operations.  Its availability to commanders 
anytime and anywhere it is needed is a matter of first importance. 
 
How might we ensure this availability?  Training (and its performance aiding analog) provides one means to 
accomplish this objective, particularly if it can be delivered anytime and anywhere.  For example, we might 
supply each user with an omnipresent tutor.  Such tutoring is probably best done by a human who possesses 
expertise in the relevant subject matter, a comprehensive range of tutorial techniques, and sufficient 
knowledge of the user to identify, establish, and sustain in that individual the precise human competence 
needed.  Research has shown such tutoring to be extremely effective, producing an often-noted two standard 
deviations of improvement over less accessible and less effective classroom instruction (Bloom, 1984).  Such 
an approach has been called an instructional imperative and an economic impossibility.  It would be 
maximally effective but remains unaffordable because, for many obvious reasons, we cannot supply every 
user with a human tutor.  This situation creates a gap between what is needed and what we can afford.  As in 
many other endeavors, we are attempting to apply technology to fill this gap. 
 
The research evidence suggests that such applications of technology can succeed.  In nearly 300 studies 
comparing classroom (one teacher, many students) with computer-mediated, individualized instruction (one 
computer teacher, one student) across many different settings and subject matters, we find a ‘rule of thirds’ 
emerging.  That is to say that, compared to classroom instruction, technology-based instruction costs about a 
third less and, additionally, either increases achievement by a third when instructional time is held constant, 
or decreases time to reach constant levels of achievement by about a third.  More detailed discussions of 
these data have been presented by Fletcher (1997, 2002), Foster and Fletcher (2002), Kulik (1994), Niemiec, 
Sikorski, & Walberg (1989), and others. The primary payoff for military operations is, of course, the more 
rapid and reliable preparation of personnel to perform operational duties, producing significant payoffs for 
resource expenditures, readiness, and, most importantly, operational effectiveness. 
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Similar research evidence exists in support of technology used to aid performance and decision-making.  For 
instance, technicians with only general training have been found to perform as well as specialists (who 
required time-consuming and expensive training) if they are provided hand-held or wearable performance 
aids (e.g., Fletcher and Johnston, 2002; Joyce, 2001; Wisher and Kinkaid, 1989).  These aids contribute to 
military readiness and effectiveness not only by releasing individuals earlier for operational duty, but also, by 
enhancing human competence for maintaining, operating, and deploying materiel assets -- thereby 
significantly enhancing materiel readiness. 
 
Costs also matter, of course.  For instance, the United States military spends about $4 billion a year on 
specialized skill training.  This is the training provided after “basic” or accession training to qualify 
personnel for the many technical jobs (e.g., wheeled vehicle mechanics, radar operators, avionics technicians, 
oceanographers, medical technicians) needed to perform military operations. It does not include aircraft pilot 
training, field training, or factory training, which are covered in separate cost categories.  If the US were to 
reduce by 30 percent the time to train 20 percent of the personnel undergoing specialized skill training, it 
would save over $250 million per year.  If it were to do so for 60 percent of the personnel undergoing 
specialized skill training, it would save over $700 million per year (Foster and Fletcher, 2002).  These are 
appreciable savings by most standards. 
 
What do these analyses and observations have to do with cognitive modeling?  Effective education, and 
training must start with a dynamically updateable understanding, or model, of the current state of the user, a 
model of the knowledge, skills, and abilities the user should attain, and instructional techniques, strategies, 
and processes for getting from one to the other. This sort of modeling occurs in classroom learning where 
teachers continually assess what their students know, the level or degree to which they know it, and the most 
efficient ways to progress in achieving instructional goals. As discussed in the next section, this modeling is 
also found, both implicitly and explicitly in effective technology-based instruction.   
 
Similar modeling processes are also required to support performance and decision aiding, even though the 
emphasis in these applications is on problem solution rather than learning.  A model of the user is needed to 
provide advice that can be understood and carried out, as well as a model of the system or situation with 
which the user is interacting, and the ability to maintain something similar to an instructional dialogue to 
help the user identify correct solutions or decisions. 
 
In both cases, concern with the knowledge, skills, and abilities that comprise human competence leads us to 
human cognition and the need to map current cognitive states onto goal cognitive states and determine what 
must be done next.  This presents severe difficulties for classroom instruction (one teacher, many students).  
For instance, a problem arises from the degree to which students in a typical classroom vary in their prior 
knowledge, abilities, and learning progress.  Research suggests variation by about a factor of five (e.g., 
Corno & Snow, 1986; Gettinger & White, 1980; Gustaffson & Undheim, 1996; Tobias, 1989).  Especially 
notable for military applications is the observation that variability in prior knowledge increases with age and 
may be more important in determining progress in such post-secondary venues as military training than it is 
for students in their earlier years of schooling.  Such variability suggests the importance, for both efficiency 
and effectiveness in military education, training, and performance aiding, of tailoring them to the specific 
needs of individual users. 
 
Assessment of cognition in classroom instruction is necessarily both informal and imprecise.  If we seek to 
achieve human performance outcomes reliably, anytime, anywhere, and affordably, we must have recourse to 
technology.  If we are to use computer technology to achieve these ends we must be able to represent -- or 
model in digital form -- current cognitive states, goal states, and ongoing progress from one to the other.  The 
empirical results discussed above, arising from technology-based education, training, and performance 
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aiding, suggest that to some degree we have been successful in doing this.  The question then naturally arises 
as to how well our ability to implement and use such models meets the need for them. 
 
The Current State of Cognitive Modeling 
 
Implicit Cognitive Models 
 
Cognitive models are implemented both implicitly and explicitly in technology-based instruction.  Consider 
the following sample instructional item, which is typical of much, perhaps most, computer-mediated 
instruction: 
 

In the multiplication 3 x 4 = 12, the number 12 is called a ________. 
 

A. Factor    {Branch to remedial X1} 
B. Quotient {Branch to remedial X2} 
C. Product  {Reinforce, go to next} 
D. Power  {Branch to remedial X3} 

 
In this item, the system, the computer instructor, assumes that a student responding “A” misunderstands the 
meaning of ‘Factor,’ and lacks an understanding of ‘Product’, or both.  The student will be branched to some 
instructional materials intended to correct one or the other of these cognitive states and then returned to this 
item or one similar to it.  The same type of remedial approach is applied to responses of “B” and “D”.  A 
student responding with “C” may be rewarded,  ‘reinforced’, with encouraging, or positive, feedback and is 
sent on to whatever item will continue progress toward the instructional goal(s), an action which may by 
itself constitute positive reinforcement. 
 
The above item appears in an article by Norman Crowder written for Automated Teaching, a book that was 
published in 1959.  We may assume the use of cognitive models is a recent innovation in technology-based 
instruction, but there is a model of cognition and instructional progress evident in this approach.  It covers 
transitions from unlearned to learned states and illustrates what Crowder called ‘intrinsic’ programming.  
This approach stands in contrast to the expensive and difficult-to-prepare ‘extrinsic’ programming advocated 
by B. F. Skinner (e.g., 1954), and for good reasons of economy and utility it is the dominant approach (still) 
in use today in technology-based instruction.  It may be found covering many subject matters, posing 
questions following text paragraphs, graphic displays, simulations, audio presentations, video sequences, 
and/or other sources of instructional content, but the underlying logic remains the same as Crowder’s original 
– display something, elicit a response, and branch to remedial or reinforcing material depending on the 
response.   
 
In order to prepare an item such as the above, a developer must both anticipate and prepare responses for 
several discrete cognitive states, represented by the correct answer (response C) and the ‘distractors’ 
(responses A, B, and D) to the item.  The cognitive model represented by these states is static, implicit, and 
limited, but it is there.  The main difference between the cognitive modeling in Crowder’s (and Skinner’s) 
approaches and the cognitive modeling being developed today is that the earlier models for intrinsic (and 
extrinsic) programming were implicit, embodied in the program of instruction, whereas today we are 
attempting to use more explicit models of cognition that we can abstract, express, and validate separately 
from the systems in which they are used. 
 
Explicit Cognitive Models:  Quantitative 
 
These more explicit cognitive models are being used for such applications as intelligent tutoring systems and 
the human behavior modeling we need to generate computer (automated) military forces for constructive and 
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virtual simulation.  Explicit models of cognition were also applied early-on, in the 1960s.  They were simple 
and intended to account for rudimentary learning objectives that could be reduced to something like the 
substantial amounts of stimulus-response, associative pairing required to learn such material as arithmetic 
‘facts’ (addition, subtraction, multiplication tables), second language vocabulary, and technical jargon 
(names and functions of biological or mechanical structures).  Nonetheless, they led to sophisticated and 
effective instructional approaches, and the line of research needed to determine the full range of learning 
situations and objectives to which they could be applied was begun but left unfinished and is rarely found 
today. 
 
As an example of this approach (and its use of cognitive models) consider the following model of learning 
(adapted from Paulson, 1973) which attempted to account for the probability that a particular item for a 
particular learner would transition from the unlearned state (U), to either a short-term learned state (S), i.e., 
present in working memory, or to a long-term learned state (L), i.e., stored in long-term memory: 
 
 
  State on Trial n+1   

 L S U  P(correct) 
L 1 0 0  1 
S c 1-c 0  1 

 
State on 
Trial n 

U a b 1-a-b  g 
 
In words: 
 
•  If a learned item (state L) is presented, then: 
-  With probability = 1, it stays there.  
  
•  If an unlearned item  (state U) is presented, then: 
-  With probability = a, it will transition to long term-memory and the learned state, 
-  With probability = b, it will transition to a short-term state (S) in working memory from which it can either 
be learned or forgotten, and finally,  
-  With probability = 1-a-b, it will remain unlearned.  
 
•  If an item is in short-term, working memory (state S), then: 
-  With probability = c, it will transition to long-term memory and the learned state, otherwise, 
-  With probability = 1-c, it will remain in the short-term state.   
 
•  An item in the short-term state will not slip back to the unlearned state.   
 
This formulation, which is based on Paulson’s (1973) discussion, accounts for guessing.  As shown in the 
right-most column above, he assumed a probability = g (presumably for ‘guessing’) of a correct answer to an 
unlearned item, but a probability = 1 for a correct answer to an item in the learned or short-term state.  The 
parameters are estimated for each item-student combination. 
 
A key feature of this model is that it accounts for items that are not presented on a trial.  In Paulson's 
formulation -- based on Rumelhart’s General Forgetting Theory (1967) -- when an item is not presented, 
transitions between states are expected to occur in accord with the following transition matrix: 
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  State on Trial n+1 
 L S U 
L 1 0 0 
S 0 1-f f 

 
State on 
Trial n 

U 0 0 1 
 
In words, when an item is not presented: 
 
•  If it is in the learned or unlearned state, it stays there; 
 
•  If it is in the short-term state, it may regress to the unlearned state with probability f or remain in the short 
term state with probability 1-f. 
 
Formulations such as this, which are based on explicit transition models of memory, led to an instructional 
strategy that has been proven optimal in maximizing the number of items learned in the total time set aside 
for instruction, T, and allowing for a predetermined number of items, N, to be presented in a single session 
(e.g., Atkinson and Paulson, 1972).  The optimal solution determines which N items to present to a particular 
student so that the total number of items the student learns is maximized at time T.  The solution is roughly 
the following: 
 
1. Before each trial, identify the item or items in N that have received the fewest number of correct 
responses since the last error.  
2.  If only one item is identified, present that item.  
3.  If more than one item is identified, select from this group the item or items that have been presented 
the fewest number of times.  
4.  If only one item remains, present that item.  
5.  If more than one item remains, select one at random and present it.  
 
This description does not describe how items that have reached criterion in the current pool of N items can be 
optimally replaced with new items.   Such procedures have been discussed by Atkinson and Paulson (1972) 
and Chant and Atkinson (1973).   
 
Quantitative models of this sort continue to be used in technology-based as particularly evidenced by efforts 
to apply Bayesian networking to assess the cognitive states of learners (e.g., Van Lehn & Niu, 2001).  These 
models use Bayes’ theorem to work backward from users’ responses to determine the probabilities that they 
are using (perhaps have learned) specific cognitive processes.  This approach can lead to quite sophisticated 
models of learners’ knowledge and skills. 
 
Three points may be worth making here: (1) Both implicit and explicit models of cognition and cognitive 
processes have been used in technology-based instruction from its beginning; (2) Fairly simple cognitive 
models for fairly simple instructional paradigms can lead to sophisticated and effective instructional 
strategies; and (3) This approach remains a promising line of quantitative research that deserves to be 
explored more fully. 
 
Explicit Cognitive Models:  Qualitative 
 
A line of research and development in cognitive modeling that has been more vigorously pursued in recent 
years is less quantitative than the above models, but the range of cognition covered tends to be more 
comprehensive and can thereby be used to meet a wider range of learning objectives.   This work typically 
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comes under the heading of ‘human behavior modeling’ and is increasingly used in the development of 
simulations for training personnel and units, analyzing tactical, operational, and strategic alternatives, and 
designing, developing, and acquiring military materiel.  
 
We are fortunate that a number of systematic and comprehensive analyses of these models have recently 
appeared such as those by Pew and Mavor (1998), who reviewed 11 such models, Ritter, et al. (2002), who 
reviewed 7 models not covered by Pew and Mavor, and Morrison (2003), who reviewed 19 such models.   
 
The models selected for analysis in these reviews were intentionally devised to be implemented in digital 
form – in computer algorithms.  Doing this for any model is a significant demonstration.  If a model can be 
represented in an algorithm, it can be tested.  Using its algorithmic representation to capture and test 
cognitive processes can significantly enhance both our knowledge of these processes and the effectiveness of 
our education, training, and performance aiding applications.  Diagnostic information indicating where the 
model is correct, will demonstrate the validity of the model, and indicating where it is incorrect, will suggest 
where the model must be modified to account for the full range of human cognition.  Significant scientific 
and technological advances can arise from information of this sort, as well as substantial improvements in 
our ability to educate, train, and assist military personnel. 
 
As Morrison (2003) points out, most of these models are systems of if-then, condition-response 
(‘production’) rules that simulate cognitive structures and processes.  The 19 models he reviewed, which 
provide a snapshot of the current state of human cognition and behavior representation, are summarized in 
Table 1. 
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Table 1.  Summary Descriptions of Cognitive Aspects in Models Reviewed by Morrison (2003) 
 

Model Name Summary Description Reference(s) 
Atomic Components of 
Thought (ACT) 

Intended to provide a unified theory of mind and 
a design basis for instructional environments 
(e.g., intelligent tutors, computer generated 
forces) and human interfaces.  Distinguishes 
between declarative knowledge (represented with 
semantic networks) and procedural knowledge 
(represented using if-then rules). 

(Lebriere, 2002) 
(Anderson, 
Bothell, Byrne, 
and Lebriere, 
2002) 

Adaptive Resonance 
Theory (ART) 

Family of neural net models designed to explain 
sensory-cognitive processes (e.g., perception, 
recognition, attention, reinforcement, recall, and 
working memory).  Postulates bottom up (e.g., 
perceptions) and top down (e.g., expectations, 
attention control) functions in working memory 
that interact to produce learning. 

(Grossberg, 
1976a; 1976b) 
(Krafft, 2002) 
(http://web.umr.
edu/~tauritzd/art
) 

Architecture for 
Procedure Execution 
(APEX) 

Intended to reduce time and effort needed to 
develop models of human performance in 
complex, dynamic environments such as 
simulations, explorations of human performance 
theories, and assessments of equipment design on 
human performance.  Includes goal-directed 
action selection for tasks and procedures and 
resource allocation for perceptual (mostly 
visual), cognitive, and psychomotor functions. 

(Freed, 
Dahlman, Dalal, 
and Harris, 
2002) 
(http:// 
www.andrew.c
mu.edu/~bj07/ap
ex) 

Business Redesign 
Agent-Based Holistic 
Modeling System 
(Brahms) 

Models social as well as man-machine 
interactions.  Uses agents to model interactions 
among physically dispersed groups (e.g., teams), 
and if-then rules (“detectables” and “beliefs”) to 
model decision making (via “thoughtframes”) 
and behavior within the groups.  Emphasizes 
ethnographic analyses and socio-technical work 
practices, activities shaped by socio-technical 
environment, and constructivist, situated 
cognition to model cognition and behavior. 

(Sierhuis and 
Clancey, 1997) 
(Clancey, Sachs, 
Sierhuis, and 
van Hoof, 1998) 
(Acquisti, 
Clancey, van 
Hoof, Scott, and 
Sierhuis, 2001) 

Cognition and Affect 
Project (CogAff)  
{with associated 
SimAgent toolkit} 

Conceptual space for describing cognitive 
architectures.  Integrates emotional with 
cognitive processes.  Incorporates three layers of 
cognition (reactive, deliberative, and reflective or 
meta-cognitive), three layers of information 
processing (perception, central processing, and 
action), and three types of emotions (primary 
based on reaction, secondary based on 
deliberation, and tertiary based on reflection) all 
producing different perceptual, memory, and 
motor functions. 

(Sloman, 2001; 
2003) 
(http://www.cs.b
ham.ac.uk/~axs/
cogaff.html) 
 

http://web.umr.edu/~tauritzd/art
http://web.umr.edu/~tauritzd/art
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Model Name Summary Description Reference(s) 
Cognition as a Network 
Of Tasks (COGNET) 
{with associated GINA 
and iGEN™ toolkits) 

Intended for cognitive task analysis and 
description of work domains in multi-task 
environments requiring contemplative, decision-
oriented, open-ended responses.  Uses three 
subsystems to represent information processing 
(sensory/perceptual, mental modeling, 
action/motor), four forms of if-then rule-based 
task knowledge (goal directed task hierarchies, 
perceptual demons to guide attention, blackboard 
for organizing declarative information, and 
possible actions linked to time and resource 
requirements), and meta-cognitive functions.  
Allows  interfacing with other applications. 

(Zachary, 
Campbell, 
Laughery, 
Glenn, and 
Cannon-Bowers, 
2001) 
(http://www.chii
nc.com/cogneth
ome.shtml) 

Cognitive Complexity 
Theory (CCT) 
{with associated 
GLEAN3 toolkit} 

Focused on human interface design, human-
computer interaction, and sequential task 
performance.  Employs device models (transition 
networks), user models (sequentially executed if-
then rules, the fundamental CCT units of 
cognition, retrieve from long-term memory), and 
mental operators to represent covert cognitive 
processes.  Long-term memory  

(Kieras and 
Polson, 1985) 
(Kieras, 1999) 

Cognitive Objects within 
a Graphical 
EnviroNmentT 
(COGENT) 

Intended solely to provide tools (via a visual 
programming environment that evolves with the 
model being built) for cognitive modeling, 
assuming functional modularity (cognition as 
interaction among semi-autonomous subsystems) 
and using low-level processing components. 

(Cooper, Yule, 
and Sutton, 
1998) 
(Yule and 
Cooper, 2000) 
(http://cogent.ps
yc.bbk.ac.uk) 

Concurrent Activation-
Based Production 
System (CAPS) 

Hybrid model for central cognitive functions 
(e.g., reading comprehension).  Primary focus is 
on modeling patterns of brain activation patterns 
in high-level cognition via if-then rules for 
specific areas of the brain and associative 
networks for cognitive subsystems.  Total 
activation in working memory is capped, 
concerned exclusively with declarative 
knowledge (facts), but with different limits for 
different individuals.  Long-term memory 
includes procedural and declarative knowledge. 

(Just, Carpenter, 
and Varma, 
1999) 
(http://coglab.ps
y.cmu.edu/proje
cts_set.html) 

Construction-Integration 
Theory  
(C-I Theory) 

Uses a symbolic theory of sentence 
comprehension and propositions (actions and 
objects of the action) stressing goal formation to 
provide a general model of cognition.  
Comprehension progresses from approximations 
to verified integration through mutually 
reinforced associations and spreading activation 
in memory.  Extended to cover comprehension of 
novel computer interfaces (LInked model) and 
new websites (CoLiDeS model) and to 
incorporate concepts from Latent Semantic 

(Kintsch, 1998) 
(Landauer & 
Dumais, 1997) 
(Kitajima & 
Polson, 1997) 
(Kitajima, 
Blackmon, & 
Polson, 2000) 
(http://psych-
www.colorado.e
du/ics) 

http://www.chiinc.com/cognethome.shtml
http://www.chiinc.com/cognethome.shtml
http://www.chiinc.com/cognethome.shtml
http://coglab.psy.cmu.edu/projects_set.html
http://coglab.psy.cmu.edu/projects_set.html
http://coglab.psy.cmu.edu/projects_set.html
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Model Name Summary Description Reference(s) 
Analysis (LSA) used to derive meaning from 
text. 

Distributed Cognition 
(DCOG) 

Intended to model individuals’ expert behavior 
with agents that use multiple strategies to 
respond to a complex environment (air-traffic 
control).  Based on a two dimensional space: 
Abstraction with three levels (skill-based 
responses to signals, rule-based responses to 
signs, and knowledge-based responses to 
symbols) and Decomposition (ranging from 
individual component to total system 
processing).  Processing within this space 
depends on level of expertise, workload 
environment, and an individual’s preferred level 
of engagement. 

(Eggleston, 
Young, & 
McCreight, 
2000) 
(Eggleston, 
Young, and 
McCreight, 
2001) 

Executive 
Process/Interactive 
Control (EPIC) 

Intended to model details of peripheral cognitive 
processes, input (perception) and output 
(psychomotor responses) to inform human-
system interface design by predicting the order 
and timing of responses.  Includes long-term 
storage of declarative and procedural knowledge 
and working memory for assessing their 
application. Capacity and retrieval limitations 
arise only from perceptual and/or psychomotor 
systems, not from central memory store. 

(Kieras & 
Meyer, 1995) 
(http://www.eec
s.umich.edu/~ki
eras/epic.html)  
 

Human Operator 
Simulator (HOS) 

Intended to inform human-system interface 
design by modeling human performance based 
on the sequence and timing of subtasks organized 
in networks. Uses simulation objects 
(configuration of displays and controls), task 
networks (if-then rules selecting verb-object 
pairs used to manipulate the objects), and micro-
models (times to complete required subtasks 
involving perception, information processing, 
and psychomotor responses) to determine human 
response times. 

(Wherry, 1976) 
(Harris, 
Iavecchia, & 
Dick, 1989) 
(Glenn, 
Schwartz, & 
Ross, 1992) 

Man-machine Integrated 
Design and Analysis 
System (MIDAS) 

Intended to inform human-system interface 
design by modeling individuals and interactions 
among individuals in performing multiple, 
concurrent tasks.  Uses sensory input (operators 
and perceivable – detectable, recognizable, and 
identifiable – objects), memory (with declarative 
– beliefs in long-term memory, contexts in 
working memory – and procedural components), 
decision-making, attention (with limitations on 
processing resources), situation awareness 
(actual and perceived), and psychomotor output 
to model human operator limitations and 
capabilities. 

(Corker & 
Smith, 1993) 
(Hart, Dahn, 
Atencio, & 
Dalal, 2001) 
(http://caffeine.a
rc.nasa.gov/mid
as/index.html) 
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Model Name Summary Description Reference(s) 
Micro Systems Analysis 
Of Integrated Network 
Of Tasks (Micro Saint) 
{May include the 
Integrated Performance 
Modeling Environment 
(IPME), using HOS 
micro-models, and 
WinCrew for estimating 
workload} 

Simulation tool that uses a detailed task analysis 
to decompose human performance into a 
networked hierarchy (with branching logic and 
sequential dependencies) of discrete tasks and 
subtasks for which performance estimates can be 
validated.  Network consists of subtask nodes 
(with launching conditions, time to complete, 
and effects) and relationships (that may be 
probabilistic, tactical requiring a threshold value, 
or multiple initiating more than one subtask).  
Designed to communicate with other models and 
applications through middleware. 

(Laughery & 
Corker, 1997) 

Operator Model 
Architecture (OMAR) 
{Uses Developers 
Interface, a graphics 
toolkit, for developing 
performance models.} 

Models human behavior as interactions among 
independent computational agents representing 
interacting individuals or cognitive processes 
within individuals.  Allows both sequentially 
dependent and parallel task performance with 
order determined by activation levels of tasks – 
without an explicit executive process.  Allows 
facile interface with other models. 

(Deutsch, 
MacMillan, & 
Cramer, 1993) 
(Deutsch, 1998) 
(Cramer, 1998) 

PSI (Not an acronym) Attempts to integrate motivation with cognitive 
processes.  Based on three levels of needs that 
interact to determine motive strength and specific 
goal behaviors: System needs (water and 
energy), Preservation level (pain avoidance), 
Information level (certainty, competence, 
affiliation).  Action strategies first seek 
automatized skills, then knowledge-based 
behavior, then trial and error to satisfy goals. 

(Bartl & Dörner, 
1998)  
(Ritter, et al., 
2002) 
(http://www.uni-
bamberg.de/~ba
2dp1/psi.html) 

Situation Awareness 
Model for Pilot-in-the-
Loop  Evaluation 
(SAMPLE) 

Generalized from original effort to model 
situation awareness of pilots and air crews in air 
combat.  Uses cognitive task analyses, pattern 
recognition from Klein’s Recognition-Primed 
Decision-Making, Endsley’s three levels of 
awareness (detection, identification, and 
prediction), and Rasmussen’s three tiers of action 
strategy (skill-based pattern recognition, 
standardized if-then rules, and knowledge-based 
problem solving) to provide three stages of 
processing: information processing (with a 
continuous state estimator and a discrete event 
detector), situation assessment (with the 
information fusion and reasoning required by 
multi-tasking), and decision-making (with a 
procedure selector and a procedure executor).  
Output includes information disparity, situation 
awareness disparity, and combat advantage 
index. 

(Rasmussen, 
1983) 
(Endsley, 1988) 
(Klein, 1989) 
(Mulgund, 
Harper, & 
Zacharias, 2002) 
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Model Name Summary Description Reference(s) 
State, Operator, And 
Result (SOAR) 

Intended as a comprehensive model of human 
cognition focused on operational task domains 
depicting all behavior as goal-driven movement 
through problem spaces that define states and 
operators for the task(s) at hand.  Uses a four-
cycle iterative process involving: Input (via 
human perception), Elaboration (matches if-then, 
condition-action rules in long term memory with 
those in working memory to issue proposals for 
decision making and direct commands for 
psychomotor actions), Output (psychomotor 
execution), Decision (either selects operators or 
identifies ‘impasses’ requiring a new subgoal 
until all impasses are resolved).  Uses a single 
process for long-term memory, learning, task 
representation, and decision-making.  All 
learning occurs through “chunking,” which 
occurs through impasse subgoaling and 
resolution.  Emotions arise from situation 
awareness clarity and confusion.  Integrates 
individual and team knowledge and allows goals 
and plans to be shared among team members. 

(Lewis, 2001) 
(http://ai.eecs.u
mich.edu/soar) 
(http://www-
2.cs.cmu.edu/afs
/cs/project/ 
soar/public/ww
w/home-
page.html) 
(http://www.isi.e
du/soar/soar-
homepage. 
html) 
(http://www.nott
ingham.ac.uk/pu
b/soar/ 
nottingham/soar
-faq.html) 
(http://phoenix.h
erts.ac.uk/~rmy/ 
cogarch.seminar
/soar.html) 

 
 
How might these models contribute to the development of computer-mediated learning and performance 
aiding environments?  As suggested above, a model intended to support education and training needs either 
an implicit or explicit model of cognition if it is to assess the state of a learner’s knowledge, skill, and 
abilities.   To do this, it must represent memory and its interactions with other cognitive functions such as 
perception and attention.  It may also represent such cognitive functions as decision-making and problem 
solving as well as cognitive responses to the environment such as social behavior and situation awareness 
and/or the extent of cognitive workload.  
 
However, if a model is to support education and training, it is not enough for it just to represent the current 
state of cognitive processing.  It must also represent and project its evolution and development.  In short, it 
must include a model of human learning.  Table 2, taken directly from Morrison, summarizes the cognitive 
functions covered by the models summarized in Table 1.  It indicates which models explicitly represent one 
or more of the following cognitive processes: perception, psychomotor performance, attention, situation 
awareness, short-term memory, long-term memory, learning, decision-making, problem solving, cognitive 
workload, emotional behavior, and social behavior.  
 
The table indicates that: 
 
• All 19 models represent decision making – but it is largely the reactive form of decision making that is 

captured in if-then rules.  
 
• All 19 models represent either short- or long-term memory.  
 
• Perception and attention were well represented in 16 of the reviewed models.  
 

http://www-2.cs.cmu.edu/afs/cs/project/ soar/public/www/home-page.html
http://www-2.cs.cmu.edu/afs/cs/project/ soar/public/www/home-page.html
http://www-2.cs.cmu.edu/afs/cs/project/ soar/public/www/home-page.html
http://www-2.cs.cmu.edu/afs/cs/project/ soar/public/www/home-page.html
http://www-2.cs.cmu.edu/afs/cs/project/ soar/public/www/home-page.html
http://www-2.cs.cmu.edu/afs/cs/project/ soar/public/www/home-page.html
http://www.isi.edu/soar/soar-homepage.html
http://www.isi.edu/soar/soar-homepage.html
http://www.isi.edu/soar/soar-homepage.html
http://www.isi.edu/soar/soar-homepage.html
http://www.nottingham.ac.uk/pub/soar/ nottingham/soar-faq.html
http://www.nottingham.ac.uk/pub/soar/ nottingham/soar-faq.html
http://www.nottingham.ac.uk/pub/soar/ nottingham/soar-faq.html
http://www.nottingham.ac.uk/pub/soar/ nottingham/soar-faq.html
http://www.nottingham.ac.uk/pub/soar/ nottingham/soar-faq.html
http://phoenix.herts.ac.uk/~rmy/
http://phoenix.herts.ac.uk/~rmy/
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• Although only 4 of the models explicitly represented situation awareness, the functions of situation 
awareness were present in those representing perception and attention.  

 
• Social behavior was represented in only 5 of the models.  
 
• Emotional behavior was represented in only 3 of the models. 
 
• Learning was represented in only 5 of the models as was problem solving.  Morrison suggests that this 

limited representation may be due to the nature of condition-response production models, which can 
react to the situations contained in anticipated if-states, but which may not adapt well, if at all, to the 
unanticipated states and conditions that must be accommodated in learning and problem solving.   

 
Table 2. Cognitive and Behavioral Functions Represented in Models Reviewed by Morrison (2003) 
 

Cognitive Function Represented 

Acronym/ 
Abbreviation 
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e 
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kl

oa
d 

E
m

ot
io

na
l 

B
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B
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av
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ACT X X X  X X X X X    
ART X  X  X X X X     
APEX X X    X  X     
Brahms X X    X  X    X 
CogAff X X   X X  X   X  
COGNET X X X X X   X X X   
CCT X X   X X  X     
COGENT     X X X X     
CAPS   X  X X  X X    
C-I Theory   X  X X  X     
DCOG X  X  X X  X  X   
EPIC X X   X X  X     
HOS X X X  X   X     
MIDAS X X X X X X  X    X 
Micro Saint X  X   X  X  X   
OMAR X  X   X  X    X 
Psi X X X  X X X X X  X  
SAMPLE X  X X  X  X    X 
Soar X X X X X X X X X  X X 

 Note: An “X” entry indicates that the function is represented by the model.  
 
The five models judged to represent learning are: ACT, COGENT, CAPS, PSI, and Soar.  All five of these 
models also represent long-term memory, working memory, and decision-making.  All except COGENT also 
represent perception, psychomotor performance, and attention.  
 
A model of cognition that includes learning is necessary for education and training applications, but it is not 
sufficient.  A model of learning is not a model of instruction.  All 19 models, as good as many of them are, 
lack this component.  This component is needed to suggest links between specific instructional interventions 
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and specific learning outcomes – teaching strategies that reliably bring about transitions from the learner’s 
current cognitive state to one capable of producing the intended instructional outcomes.  
 
Instructional Systems Development 
 
Attaining a “model of instruction” centered around models of human cognition would lead to what might be 
called “engineering of instruction” --instruction viewed as neither art nor science, but as a way to reliably 
and efficiently produce specified instructional outcomes.  Such a capability for development of instructional 
and performance aiding systems should be based on empirically derived principles that can be realistically 
applied.  Outcomes might consist of general objectives such as ability to transfer knowledge, long-term 
retention of knowledge and skill, motivation to continue learning, speed of response, accuracy of response, 
and so forth.  The outcomes might be associated with more specific training objectives such as the ability to 
locate single component failures in the XYZ power supply, pack a reserve parachute, or devise tactical plans.   
 
Fragments of such a capability for engineering instruction have been identified in research literature, data, 
and findings.  Work is needed to organize, substantially expand, and include them as principles to be 
incorporated in our current models of cognition.  In addition, engineering of instruction requires, as an 
essential foundational element, robust human cognitive models in order for the training, education or 
performance aiding system to “know” the user and to dynamically adapt to the user’s state. 
 
What Research and Development Do We Need? 
 
This brief review of cognitive models applied to automated instructional and performance aiding systems 
suggests that much good progress has been made but that much remains to be done.  We do not yet have the 
models we need to fully support the broad range of human behavior required for simulations we now use in 
training, analysis, and acquisition.  More generally, we still lack the comprehensive models we need to 
represent subject matter expertise, levels of student learning, and most especially the links between specific 
instructional interventions and the development of specifically targeted cognitive abilities needed for 
competent performance.  What research and development should we pursue to achieve short- mid- and long-
term enhancements in the state of the art? 
 
This issue was addressed in a workshop held in November 1999 to assess research and development needed 
to support the Department of Defense Advanced Distributed Learning initiative (Final Report, 1999), in a 
series of workshops sponsored in 2002-2003 by the Learning Federation (Learning Federation, 2003), and in 
another HFM Symposium(Foster and Fletcher, 2002).  All three sources cover a wide range of issues and 
organize their results in different categories, but some common findings, specifically concerned with 
research necessary for the development of cognitive models, emerge from them.   These findings, concerning 
cognitive modeling, are summarized in Table 3 as issues along with some specific research needed to meet 
these goals and fill gaps in our current capabilities. 
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Table 3.  Issues and Research Requirements for the Development of Cognitive Modeling Summarized from 
Assessments of Learning Technology Needs 
 
Issue Research Requirements 
 
Cognitive Theory 

 
• Representation of ‘higher order’ cognitive capabilities (e.g.,  decision-
making, problem-solving, meta-cognition, pattern recognition, critical 
thinking, situational awareness, teamwork). 
 
• New concepts and theories of cognition and cognitive workload based on 
new measurement capabilities. 
 
• Valid and verified representation of expertise and its development in 
complex, ill-structured environments. 
 
• Knowledge representations and ontologies that allow interoperability and 
logical operations within and across disciplines. 

 
Human Behavior 
Representation 

 
• Comprehensive and accurate representation of individual and crew, team, 
and unit expertise, capabilities, and performance. 
 
• Free, cognitively transparent exchange of virtual (avatar) and actual users 
in crew, group, team learning 

 
Cognitive Model 
Authoring 

 
• Automated development, verification, and validation of cognitive 
models.  
 
• Automated processes for performing cognitive analysis and cognitive 
readiness assessment. 
 
• Automated capture of expertise -- self-generating, self-modifying data 
bases built from cases and examples of successful problem solving and 
decision-making. 
 
• Principles for developing physically and cognitively realistic avatars. 
 

 
User Assessment 
and 
Representation  

 
• New forms of computer-administered assessment items using the full 
display, timing, and natural language understanding capabilities of 
technology. 
 
• Generation of valid, unobtrusive near real time assessment from 
interactions of individuals, teams, crews, and units with the learning or 
performance aiding environment. 
 
• Representation of subject matter misunderstandings and their sources. 
 
• Generation and use of questions to build cognitive profiles of users. 
 
•  Assessment of cognitive workload. 
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Issue Research Requirements 
•  Assessment of high-level cognitive skills needed to deal with 
unanticipated and unexpected situations. 

 
Management of 
Progress 

 
• Ability to match instructional or problem solving goals with current state 
of the user and generate or select optimal tutorial and/or problem solving 
strategies. 
 
• Automated principles of design and presentation needed to ensure 
reliable achievement of targeted cognitive state(s) by individuals, crews, 
teams, and units. 
 
• Automated principles for the development of higher-level cognitive skills 
such as creativity, adaptability, problem solving, and situation awareness. 
 
• Comprehensive understanding of meta-cognition and its development. 
 
• Comprehensive understanding of incentive management and its 
interaction with cognitive development. 
 
• Technology-based tools allowing distributed users to manage their own 
progress and problem solving. 
 
• Predictions of learning rate and success from user profile information.  

 
User Interface 

 
• Management of user dialogue based on model of user cognitive abilities, 
style, and progress toward objective(s) 

 
 
The efforts suggested by Table 3 are realistic in that that they are amenable to research that can be performed 
with approaches available from our current state of knowledge.  They suggest goals that can be achieved to 
an appreciable degree in the next 3-5 years.  Doing so will be worth the effort and will return much more to 
the success of our operational capabilities than it will cost. 
 
The value of cognitive models has another, increasingly important dimension.   The current world 
environment presents significant challenges to our capabilities for preparing military personnel to meet them, 
and thereby to our capabilities for providing military education and training.  We have responded in ways 
that have proven successful in the past, with task lists, essential task lists, mission essential task lists, and 
even joint mission essential task lists.  These task lists suggest education and training objectives that we 
know how to meet.  
 
However, the current asymmetric, unpredictable operational environment now facing our military personnel 
will inevitably present situations that are unexpected and for which they may be little prepared.  Our people 
and their allies will have to respond to these situations with agility, flexibility, creativity, and skillful 
leadership.  Their readiness to acquire the additional capabilities needed to meet these unexpected, 
unforeseen challenges will contribute substantially to the success of their operations.  How, then, can we best 
prepare our people to expect the unexpected and deal with it successfully?  Such an aspect of readiness is a 
cognitive capability.  It places special demands on our ability to model cognition and to train both individuals 
and units.  It is an essential component of what we have called cognitive readiness (Etter, Foster, & Steele, 
2000), and a combination of technology-based education, training, and performance aiding is expected to 
help our forces achieve it. 
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The components of cognitive readiness cover issues that include the following: 
 
Situation awareness, which is generally defined as the ability to perceive oneself in relation to the enemy and 
the environment. Situation awareness has been shown to improve with practice and instructional feedback. 
 
Memory, which is described as an active, reconstructive process supported by two underlying theoretical 
mechanisms: encoding specificity, which stresses the importance of external and internal cues, and transfer-
appropriate processing, which stresses actions performed during encoding and retrieval. Trade-offs exist 
between instruction used to enhance retention and speed of initial acquisition. Conditions of learning, 
particularly those providing overlearning, can be designed to enhance retention. 
 
Transfer of training, which is described as the ability to apply what is learned in one performance context to 
another. Massive amounts of practice with feedback will enhance “low-road” transfer requiring little 
cognitive mediation. Training in forming mindful, conscious abstraction will enhance “high road” transfer, 
which requires cognitive mediation. 
 
Metacognition, which refers to the executive functions of thought, particularly those pertaining to knowledge 
and regulation of one’s cognitive processes and progress toward accepted goals. Metacognitive skills can be 
enhanced by exercises designed to increase awareness of self-regulatory processes. 
 
Automaticity, which refers to processes that are performed rapidly, requiring few attentional resources. 
Practice with feedback and overlearning can produce automatic processing in many tasks. 
 
Problem Solving, which transforms goals and subgoals into a plan of action by processes such as trial-and-
error, proximity, fractionation, and knowledge-based referrals. Techniques for problem solving matched to 
goal and situation categories can be successfully taught, as can the information base needed for “strong” 
problem solving methods, which depend on acquired knowledge. 
 
Decision-Making, which is described as the selection of tactical and strategic plans, which are frequently 
primed by the recognition of learned patterns. Formal instruction in decision-making techniques may 
improve the quality of decisions, but some aspects of successful decision-making are determined by 
individual dispositions. 
 
Mental Flexibility and Creativity, which may be cast as problem-solving, applying “strong” methods based 
on acquired knowledge and skills, and “weak” methods, used for poorly defined, ill-structured, chaotic tasks. 
Creativity may be more closely associated with the latter “weak” methods. The research is unclear whether 
these weak methods can be trained directly. It seems more likely that the facility with which people apply 
appropriate weak methods (i.e., achieve “creative solutions”) to novel situations is determined by native 
abilities. 
 
Leadership, appears to consist of motivational patterns and a combination of technical, conceptual, and 
interpersonal skills, the last being the most difficult to acquire and measure. However, technical and 
conceptual skills that are needed by leaders can, to an appreciable extent, be taught. Interpersonal skills and 
patterns of motivation required for leadership appear to be more dependent on native abilities and are thus 
more difficult to teach. 
 
Emotion, must be channeled and controlled if military personnel are to perform complex tasks under the 
stress and confusion that accompany modern military operations. Deeply engaging, sensory immersing 
simulations provide promise for training warfighters to retain critical pieces of information and to perform 
under highly stressful conditions. 
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These issues have been discussed extensively in research literature and their specific relevance to cognitive 
readiness have been discussed by Morrison and Fletcher (2002).  The points to be emphasized here are that 
(a) assessment and development of the capabilities suggested by these issues will key on the adequacy of the 
cognitive models on which our education, training, and performance aiding are based and (b) the adequacy of 
our cognitive modeling is a matter of first importance in the current unpredictable operational environment. 
 
The modeling efforts reviewed in this paper along with similar efforts involving human cognition represent 
significant opportunities for cooperative research by the NATO community concerned with the human 
competence that is an essential component of every military operation.  We may wish to rise to the 
opportunities they present. 
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